
Lego Mindstorms NXT & CMUcam3
This document describes the setup and some technical details for using the CMUcam3 [1] [2]
[3] as a vision sensor for the Lego Mindstorms NXT. The essential module for coupling the
CMUcam3 with the Lego Mindstorms NXT is an I2C-to-RS232 bridge that is used to
establish the communication between the two components. The document has been written
with two goals in mind. First, it summarizes the essential steps how to set up a Lego
Mindstorms robot with the CMUcam3 as a vision sensor using the mentioned I2C-to-RS232
bridge. Second, it describes the underlying function, such that the reader should be able to
understand how the system works and how to modify it for other purposes than those
described in this document.
In the first section, the software environment and CMUcam3 setup is described. In the second
section, it is described how the CMUcam3 can be used from a standard PC using the
CMUcam2 GUI. In the third section, it is described how the CMUcam3 can be used with the
Lego Mindstorms NXT and some details on the I2C-to-RS232 bridge are given that is used for
connecting the Lego Mindstorms NXT with the CMUcam3.
The work described in this document is an extension of the work described in the semester
thesis of Leo den Hartog [7]. The advantage is a more versatile communication protocol,
resulting in easier use of the system (the standard firmware of the CMUcam3 can be used, for
instance) and higher update rates.

Section 1

Software Environment and CMUcam3 Setup
This section describes the software environment and CMUcam3 setup required in case the
I2C-to-RS232 is already available. Tools required for the development and debugging of the
I2C-to-RS232 bridge are not described. Further information about the CMUcam3 setup is
available in a separate document [4].

1.1 Software Environment Setup
The software environment described in the following paragraphs has been tested under
Windows XP. Corresponding versions of the tools should also be available for Linux and Mac
platforms.

1.1.1 LPC2000 Flash Utility

The LPC2000 Flash Utility is needed to flash the LPC2106B ARM processor on the
CMUcam3 with firmware. Download the LPC2000 Flash Utility provided by NXP from the
following location and install it:
http://www.nxp.com/files/markets/microcontrollers/philips_flash_utility.zip

1.1.2 CMUcam2 GUI

The CMUcam2 GUI is a graphic frontend for controlling the CMUcam3 from a standard PC.
Currently, there is no special GUI for the CMUcam3. By using the appropriate firmware on
the CMUcam3, it can emulate the CMUcam2 and can thus be controlled by the CMUcam2
GUI. The CMUcam2 GUI can be downloaded from the following location:
http://www.cs.cmu.edu/~cmucam2/downloads.html
The CMUcam2 GUI is Java-based and does not require installation.

1.1.3 Brick Command Center

The Brick Command Center is an integrated development environment for developing NXC
(not exactly C) programs for the Lego Mindstorms NXT. Download the Brick Command
Center from the following location and install it:
http://bricxcc.sourceforge.net

1.2 CMUcam3 Setup
To use the CMUcam3, connect it to a DC power supply of 6 to 15 volts that is capable of
supplying at least 150 milliamperes of current (such as a power adapter or a 9 volt battery),
see Figure 1. (Internally, this power supply is filtered by a 5 volt regulator.)

Figure 1: CMUCam3 connected to a PC via a USB-to-serial cable. The colors of the power
supply cables are the “usual” ones: black for GND and red for +6V.

For data I/O, the RS232 port of the camera is used. Connect the RS232 connector of the
CMUcam3 directly with the serial port of your computer in case it has got one. Unfortunately,
today’s laptops usually do not have serial ports any more. To connect the CMUcam3 to the
PC, one can use a USB-to-serial cable, as shown in Figure 1. We used a cable based on the
PL-2303 chip offered by Prolific Technology. A selection of cables where this chip is used is
available at: http://www.prolific.com.tw/eng/downloads.asp?ID=31
After installing the driver that comes with the cable, an according COM (serial) port shows up
in the device manager, as shown in Figure 2.

Figure 2: Microsoft Windows XP device manager showing correct installation of USB-to-
serial cable.

Section 2

Using the CMUcam3 in CMUcam2 Emulation Mode
The easiest way to use the CMUcam3 is by using it in CMUcam2 emulation mode. For doing
this, first the CMUcam2 emulation firmware needs to be downloaded to the camera.
Afterwards, the CMUcam2 GUI (a Java-based graphical tool) can be used to take pictures
with the camera and try different features, such as tracking a colored object.

To download the CMUcam2 emulation firmware, proceed as follows:
• Download the hex image of the CMUcam2 emulation firmware from:

http://www.cmucam.org/wiki/cmucam2-emulation
For operation in connection with the NXT, the firmware version with a baudrate of
19200 bit/s is needed (this is a constraint of the I2C-to-RS232 bridge).

• Start the LPC2000 Flash Utility.
• Turn on the CMUcam3 while pressing the reset button to startup in programming mode.
• Upload the hex image to the CMUcam3 using the “Upload to Flash” button. Upon

successful completion, the Flash Utility window should look similar to the one shown in
Figure 3.

• Turn the CMUcam3 off and on again (without pressing the reset button) to use it. The
power LED should shine brightly, while two other LEDs (of totally four) should shine
dimly.

Figure 3: Philips Flash Utility after successful upload of the hex image onto the CMUcam.

Figure 4: CMUcam2 GUI after acquiring a low resolution image from the CMUcam3.

To start the CMUcam2 GUI simply double-click on CMUcam2GUI.jar or start it from a
commandline using java –jar CMUcam2GUI.jar. After entering the COM port to which the
CMUcam3 is connected, the CMUcam2 GUI can be used to take pictures and try out different
camera features, such as tracking a colored object, see Figure 4, Figure 5, and Figure 6. For

further information about the CMUcam2 and the CMUcam2 GUI the reader is referred to the
according documents [5] [6].
Note that the CMUcam2 GUI assumes a RS232 baudrate of 115200 bits/s. To use it with a
camera whose baudrate is 19200 bits/s, the CMUcam2 GUI needs to be modified and
recompiled. For doing this, simply replace the parameter “5” by “2” in line 50 of
SerialComm.java and recompile the package.

Figure 5: CMUcam2 GUI after acquiring a high resolution image. The mouse cursor was on
top of the red ball in the foreground when taking the screenshot, resulting in the shown values
in the “Color Picker” box.

What happens behind the scenes of CMUcam2 GUI is the following: In CMUcam2 emulation
mode, the CMUcam3 listens on its serial port for new requests. Upon reception of a new
request (sent by CMUcam2 GUI, for instance), it starts performing the requested operation
and sends back according data. The CMUcam2 GUI reads these data and displays them
accordingly.
Another mode of controlling the CMUcam3 in CMUcam2 emulation mode is, therefore, to
use “hyperterminal” (or any corresponding program that is able to talk via a COM port). The
list of available commands is available in the CMUcam2 documentation [5]. As an example,
the firmware version of the camera can be obtained by sending “GV” (followed by a carriage
return), see Figure 7. As another example, the command to start the color tracking (as shown
in Figure 6) has the syntax “TC Rmin Rmax Gmin Gmax Bmin Bmax \r”. Upon receiving this
command, the CMUcam3 continuously sends “T packets” with the following syntax “T mx
my x1 y1 x2 y2 pixels confidence\r“ (see Figure 6), where the abbreviations have the
following meaning:

mx the middle of mass x value
my the middle of mass y value
x1 the left most corner’s x value
y1 the left most corner’s y value
x2 the right most corner’s x value
y2 the right most corner’s y value
pixels number of pixels in the tracked region, scaled and capped at 255: (pixels+4)/8
confidence (number of pixels / area) * 256 of the bounded rectangle and capped at 255

Figure 6: Tracking a red ball while rolling across the camera’s field of vision from left to
right. The min/max values specify bounds on the RGB values of the tracked object. FPS
stands for frames per second, that is, how often the CMUcam3 sends updated coordinates. To
obtain the textual output (lower window), CMUCam2 GUI needs to be started from a
commandline window.

Figure 7: Settings for Hyperterminal and message received after switching on CMUCam.
Messages sent by the CMUCam3 are terminated by “\r” (ASCII-code 13), resulting in a
carriage return (but not a linebreak) in HyperTerminal. Following this linebreak, a “:” (colon)
is displayed as a prompt.

Section 3

Coupling the CMUcam3 and the Lego Mindstorms NXT
To connect the NXT with the CMUcam3 an I2C-to-RS232 bridge is used. This bridge is
connected on the I2C-side to one input port of the NXT and on the RS232-side to the RS232
connector of the CMUcam, see Figure 11. The used I2C-to-RS232 bridge is the one described
in the semester thesis by Leo den Hartog [7] (with a different software running on the bridge).
A picture of the assembled bridge is shown in Figure 10. The system works as described in
the following subsections and illustrated in Figure 8 and Figure 9. (The corresponding source
code for the NXT and the I2C-to-RS232 bridge is available in Appendix A and Appendix B.)

3.1 Communication from NXT to CMUcam3
To send data from the NXT to the CMUcam3, the NXT sends data to the I2C-to-RS232 bridge
(via I2C) that forwards these data to the CMUcam3 (via RS232). This works as follows, see
Figure 8. The NXT sends byte-wise commands to the I2C-to-RS232 bridge. More specifically,
to send a command (string), the NXT sends each character of the string separately by sending
an I2C address byte followed by one payload byte. After receiving a byte on the I2C-to-RS232
bridge, it is immediately forwarded to the RS232 port (except if the byte has the value 128 or
129, see next section). This way, the NXT can easily send any command consisting of ASCII-
characters (values between 0 and 127) to the CMUcam3.
As a possibility to check whether the byte was successfully received, the NXT can issue a
receive request on the I2C bus which will be answered by the I2C-to-RS232 bridge by sending
the byte which was received last.

NXT I2C-to-RS232
bridge CMUcam3

’G’

’V’

’\r’

128

’G’

’V’

’\r’

’C’
’M’
’U’
’c’
’a’
’m’

’6’
’c’

129
read

’\r’

’:’

read

read

’:’

’\r’

’6’

129

129

read
’G’

128
read

read
’V’

’\r’
read

RS232I2C

Figure 8: Sequence of transmissions for executing the get version (GV) command on the
CMUcam3 and obtaining the result.

3.2 Communication from the CMUcam3 to the NXT
Upon reception of a command, the CMUcam3 starts to transmit the answer as soon as it is
available. Since the data rate of the RS232 link (19200 bit/s) is higher than the one of the I2C
link (9600 bit/s), these data are buffered on the I2C-to-RS232 bridge, where a ringbuffer of 89
bytes is implemented. Buffering on the ringbuffer is started when the I2C-to-RS232 receives a
byte with value 128 on the I2C input (in which case the byte is not forwarded to the RS232
link). When the I2C-to-RS232 bridge receives a byte with value 129 on the I2C input, the
buffering is stopped. By issuing a receive request on the I2C bus after sending 129, the next
byte from the ringbuffer will be returned (and not 129, as would be the case usually).
Refer to Figure 8 and Figure 9 for a graphical illustration of that protocol.

main loop

NXT I2C transmit
(address byte and

payload byte)
set READ
flag, clear
BUFFER

flag

NXT I2C receive
(address byte)

reply last
byte

received
on I2C

set
BUFFER
flag (start
buffering)

forward
byte to
RS232

payload == 129

paylo
ad == 128

payload != 128 &&

payload != 129

READ flag not set

reply next
byte from
ringbuffer

READ fla
g se

t

RS232 receive
byte

BUFFER fla
g se

t
BUFFER flag not set

drop byte
write byte

to
ringbuffer

Figure 9: Overview of the behavior of the I2C-to-RS232 bridge.

Figure 10: Top view of the I2C-to-RS232 bridge.

Figure 11: Coupling the CMUcam3 with the Lego Mindstorms NXT using the I2C-to-RS232
bridge.

3.2 Implementation
The implementation of the described protocol is straightforward:
• NXT: Sending and receiving data via an I2C port is described in the NXC programmer’s

guide [8]. Refer to Appendix A for a listing of the code.
• CMUcam3: On the CMUcam3 the standard CMUcam2 emulation firmware (19200

bit/s version) can be used without any modification.
• I2C-to-RS232 bridge: The I2C-to-RS232 bridge uses the PIC16F690 microcontroller to

implement the desired functionality. Using the PIC16F690 data sheet [9] and two
application notes [10] [11] for reference, the implementation is rather simple. Refer to
Appendix B for a listing of the code.

3.3 Performance
Using the code in Appendix A and Appendix B, color tracking is possible with an update
period of approximately 0.9 seconds. For most applications, this will be insufficient. Future
work would be needed to remove the current bottleneck which is the gathering of data from
the I2C-to-RS232 bridge. This is due to three reasons:
• I2C data rate: The data rate of the I2C link is limited to 9600 bit/s. This cannot be

changed, however.
• Length of data packets: The length of a “T packet” in the color tracking mode is up to

35 characters. The current implementation of the protocol on the NXT side always reads
69 bytes from the ringbuffer on the I2C-to-RS232 bridge to make sure that at least one

complete packet is read. By introducing shorter packets (with less information, though),
or by stopping reading new bytes from the I2C-to-RS232 as soon as a complete package
has been received the gathering of data could be accelerated.

• Protocol: Currently, for each received byte four bytes are transmitted over the I2C link
(address byte followed by 129 to indicate the request for data, another address byte to
indicate readiness to receive data and the actual payload byte). This could be simplified
to use the available bandwidth more efficiently.

Another, completely different approach would be to couple the CMUcam3 directly with the
NXT over an I2C link. In this case, an according driver for the I2C interface on the CMUcam3
would need to be implemented. (At the time of writing this document, the ARM processor on
the CMUcam3 could “only” be used as an I2C master for writing data to MMD/SD memory
cards. Slave mode has not been available.)

Appendix A

NXC Code for Lego Mindstorms NXT
/***
 * program to use CMUcam color tracking on NXT
 **/

#include "NXCDefs.h"

//application specific defines
#define I2C_PORT IN_1
#define CHAR_WIDTH 6
#define LINE_WIDTH 16
#define SCREEN_X_ORIG 5
#define SCREEN_Y_ORIG 13
#define SCREEN_WIDTH 90
#define SCREEN_HEIGHT 50
#define SPEED 70

#define PIC_ADDRESS 38
#define START_BUF 128
#define GET_CHAR 129
#define BUF_SIZE 66

//CMUcam2 specific defines
#define CAM_RESET "RS"
#define CAM_GET_VERSION "GV"
#define CAM_TRACK_PARAMS "GT"
//TC Rmin Rmax Gmin Gmax Bmin Bmax \r
#define CAM_TRACK_COLOR "TC 210 240 0 50 0 240"
#define CAM_LED_ON "L0 1"
#define CAM_LED_OFF "L0 0"

/**
 * send one byte to and receive one byte from i2c
 */
byte txrxI2C(const byte data) {
 byte recv[1];
 byte send[2];
 send[0] = PIC_ADDRESS;
 send[1] = data;
 while (I2CCheckStatus(I2C_PORT) != 0) {
 }
 I2CWrite(I2C_PORT, 1, send);
 while (I2CCheckStatus(I2C_PORT) != 0) {
 }
 while (I2CBytesReady(I2C_PORT) < 1) {
 }
 I2CRead(I2C_PORT, 1, recv);
 return recv[0];
}

/**
 * send a command byte-per-byte to i2c
 */
void sendCommandI2C(const string command) {
 int answer;
 txrxI2C(13);
 for (int i = 0; i < StrLen(command); i++) {
 answer = 0;
 do {
 answer = txrxI2C(command[i]);
 } while (answer != command[i]);
 }
 do {
 answer = txrxI2C(13);
 } while (answer != 13);
}

/**
 * send command to start buffering on the PIC16F690
 */
void startBufferI2C() {
 txrxI2C(START_BUF);
}

/**
 * send command to stop buffering on the PIC16F690
 */
void stopBufferI2C() {
 txrxI2C(GET_CHAR);
}

/**
 * read out the buffer from the PIC16F690
 */
void getResultI2C(byte &result[]) {
 for (int i = 0; i < BUF_SIZE; i++) {
 result[BUF_SIZE - i] = txrxI2C(GET_CHAR);
 }
}

/**
 * get a dummy result as expected from the PIC16F690
 */
void dummyGetResultI2C(byte &result[]) {
 for (int i = 0; i < BUF_SIZE; i++) {
 result[i] = 0;
 }
 string dummy = "T 10 20 255 4 55 6 77 128 T 10 20 30 40 abcd";
 for (int i = 0; i < StrLen(dummy); i++) {
 result[i] = dummy[i];
 }
 result[25] = 13;
}

/**
 * print the contents of the specified array
 */
void printResult(const byte result[]) {
 int i = 0;
 int j = 0;
 ClearScreen();
 for (i = 0; i < BUF_SIZE / LINE_WIDTH + 1; i++) {
 for (j = 0; j < LINE_WIDTH; j++) {
 if (j + i * LINE_WIDTH >= BUF_SIZE) {
 return;
 }
 byte help[1];
 help[0] = result[j + i * LINE_WIDTH];
 string temp;
 ByteArrayToStrEx(help, temp)
 switch (i) {
 case 0:
 TextOut(1 + j * CHAR_WIDTH, LCD_LINE1, temp, false);
 break;
 case 1:
 TextOut(1 + j * CHAR_WIDTH, LCD_LINE2, temp, false);
 break;
 case 2:
 TextOut(1 + j * CHAR_WIDTH, LCD_LINE3, temp, false);
 break;
 case 3:
 TextOut(1 + j * CHAR_WIDTH, LCD_LINE4, temp, false);
 break;
 case 4:
 TextOut(1 + j * CHAR_WIDTH, LCD_LINE5, temp, false);
 break;
 case 5:
 TextOut(1 + j * CHAR_WIDTH, LCD_LINE6, temp, false);
 break;
 case 6:
 TextOut(1 + j * CHAR_WIDTH, LCD_LINE7, temp, false);
 break;
 case 7:
 TextOut(1 + j * CHAR_WIDTH, LCD_LINE8, temp, false);
 break;
 }
 }
 }
}

/**
 * extract the last complete answer from the given array. look for
 * the last carriage return (ASCII-code 13) in the array and return
 * the values preceding this carriage return until another carriage
 * return is found or the begin of the array is reached.
 */
void getLastAnswer(byte &result[]) {
 int i;
 int j;
 byte answer_temp[BUF_SIZE];
 answer_temp[0] = 0;

 //find last carriage return
 for (i = BUF_SIZE - 1; i > 0; i--) {
 if (result[i] == 13) {
 break;
 }
 }
 //no carriage return found
 if (result[i] != 13) {
 for (int j = 0; j < 8; j++) {
 return;
 }
 }

 //copy bytes until next carriage return or 0 to answer_temp
 j = 0;
 do {
 answer_temp[j++] = result[--i];
 } while (i > 0 && result[i - 1] != 13 && result[i - 1] != 0);
 for (i = 0; i <= j - 1; i++) {
 result[i] = answer_temp[j - 1 - i];
 }
 //copy bytes in reversed order to result
 for (i = j; i < BUF_SIZE; i++) {
 result[i] = 0;
 }
}

/**
 * reset the camera
 */
void resetCamera() {
 byte result[BUF_SIZE];
 do {
 sendCommandI2C(CAM_LED_ON);
 startBufferI2C();
 sendCommandI2C(CAM_RESET);
 sendCommandI2C(CAM_LED_OFF);
 getResultI2C(result);
 getLastAnswer(result);
 } while (result[0] != ':' || result[1] != 'A' ||
 result[2] != 'C' || result[3] != 'K')
}

/**
 * extract coordinates from a received result where a result is of the
 * form .* c0 c1 c2 c3 c4 c5 c6 c7\r.*, that is, a sequence of
 * integers separated by spaces, and terminated bya carriage return
 * (ASCII-code 13)
 */
void getCoordinates(const byte result[], byte &coords[]) {
 int i;
 //find last carriage return
 for (i = BUF_SIZE - 1; i > 0; i--) {
 if (result[i] == 13) {
 break;
 }
 }
 //no carriage return found
 if (result[i] != 13) {
 for (int k = 0; k < 8; k++) {
 coords[k] = 0;
 return;
 }
 }
 //process 8 integers (each integer has max. 3 characters)
 for (int j = 7; j >= 0; j--) {

 byte temp[3];
 int k;
 int l;
 string help_string = "";
 do {
 i--;
 } while (result[i] != ' ' && i > 0);
 if (i == 0) {
 for (int k = 0; k < 8; k++) {
 coords[k] = 0;
 return;
 }
 }
 l = i;
 k = 0;
 do {
 temp[k++] = result[++l];
 } while (result[l + 1] != 13 && result[l + 1] != ' ');
 ByteArrayToStrEx(temp, help_string)
 coords[j] = StrToNum(help_string);
 }
}

/**
 * print an array of 8 integers at the bottom two rows of the display
 */
void printCoordinates(const byte coords[]) {
 for (int i = 0; i < 8; i++) {
 NumOut(1, LCD_LINE7, coords[0]);
 NumOut(25, LCD_LINE7, coords[1]);
 NumOut(50, LCD_LINE7, coords[2]);
 NumOut(75, LCD_LINE7, coords[3]);
 NumOut(1, LCD_LINE8, coords[4]);
 NumOut(25, LCD_LINE8, coords[5]);
 NumOut(50, LCD_LINE8, coords[6]);
 NumOut(75, LCD_LINE8, coords[7]);
 }
}

/**
 * main. reset the camera and drive towards a colored object.
 */
task main() {
 int button_count;
 int counter = 0;
 byte result[BUF_SIZE];
 byte coords[8];
 bool tracking_enabled = false;

 SetSensorType(I2C_PORT, SENSOR_TYPE_LOWSPEED);
 SetSensorMode(I2C_PORT, IN_MODE_RAW);
 ResetSensor(I2C_PORT);
 TextOut(1, LCD_LINE1, "Trying to reset");
 TextOut(1, LCD_LINE2, "CMUcam2.");

 resetCamera();
 TextOut(1, LCD_LINE8, "Camera reset.");

 while(true) {
 if (ButtonCount(BTNLEFT, true) >= 1) {
 ClearScreen();
 TextOut(1, LCD_LINE1, "Left button.");
 startBufferI2C();
 sendCommandI2C(CAM_GET_VERSION);
 //sendCommandI2C(CAM_TRACK_PARAMS);
 Wait(200);
 getResultI2C(result);
 printResult(result);
 tracking_enabled = false;
 } else if (ButtonCount(BTNRIGHT, true) >= 1) {
 ClearScreen();
 TextOut(1, LCD_LINE1, "Right button.");
 resetCamera();
 TextOut(1, LCD_LINE8, "Camera reset.");
 tracking_enabled = false;
 } else if (ButtonCount(BTNCENTER, true) >= 0) {
 if (!tracking_enabled) {
 startBufferI2C();

 sendCommandI2C(CAM_TRACK_COLOR);
 Wait(200);
 tracking_enabled = true;
 }
 getResultI2C(result);
 startBufferI2C();

 ClearScreen();
 Wait(70);
 getCoordinates(result, coords);

 //draw a screen showing the position of the tracked object
 printCoordinates(coords);
 RectOut(SCREEN_X_ORIG, SCREEN_Y_ORIG, SCREEN_WIDTH, SCREEN_HEIGHT);
 CircleOut(SCREEN_X_ORIG + SCREEN_WIDTH - coords[0],
 SCREEN_Y_ORIG + SCREEN_HEIGHT - coords[1]/3, 2);
 RectOut(SCREEN_X_ORIG + SCREEN_WIDTH - coords[4],
 SCREEN_Y_ORIG + SCREEN_HEIGHT - coords[5]/3,
 (coords[4] - coords[2]), (coords[5] - coords[3])/3);

 //depending on the coordinates switch the motors on and off
 Off(OUT_AB);
 if (coords[0] == 0 && coords[3] != 0) {
 continue;
 }
 int x = coords[0];
 if (x < 40) {
 RotateMotor(OUT_A, SPEED, 3 * (x - 45));
 Off(OUT_A);
 RotateMotor(OUT_B, SPEED, 3 * (45 - x));
 Off(OUT_B);
 }
 else if (coords[0] > 50) {
 RotateMotor(OUT_A, SPEED, 3 * (x - 45));
 Off(OUT_A);
 RotateMotor(OUT_B, SPEED, 3 * (45 - x));
 Off(OUT_B);
 }
 OnRev(OUT_AB, 45 - abs(x - 45));
 }
 }
}

Appendix B

Assembly Code for PIC16F690
;i2c-to-rs232 bridge
;
;modification history:
;2008-09-08: created

#include <p16F690.inc>
 __config (_INTRC_OSC_NOCLKOUT & _WDT_OFF & _PWRTE_OFF & _MCLRE_OFF &
 _CP_OFF & _BOR_OFF & _IESO_OFF & _FCMEN_OFF)

#define NODE_ADDR d'38' ;i2c address
#define BUF_SIZE d'89' ;size of ringbuffer (limited by size of register
 ;bank 0 (96 bytes) and the number of variables
 ;allocated on register bank 0, that is, 7, see
 ;cblock 0x20 below).
#define START_BUF d'128' ;code for start buffering rs232 input
#define GET_CHAR d'129' ;code for getting next byte from buffer
#define BUFFER 0 ;buffering flag (see variable state, below)
#define READ 1 ;read flag (see variable state, below)

 cblock 0x20 ;variables
i2c_rx ;buffer for one byte received from i2c
i2c_tx ;buffer for one byte to transmit over i2c
rs232_rx ;buffer for one byte received from rs232
rs232_tx ;buffer for one byte to transmit over r232
state ;state variable:
 ;no bit set: bytes received from i2c are
 ; forwared to rs232 and back-looped to i2c,
 ; bytes received from rs232 are ignored
 ;bit 0 (BUFFER): set when rs232 input should be
 ; stored in ringbuffer, this is enabled by
 ; sending START_BUF on the i2c, the START_BUF
 ; byte itself is back-looped to i2c but not
 ; forwarded to rs232
 ;bit 1 (READ): set when the next byte of the
 ; ringbuffer should be replied, this is enabled
 ; by sending GET_CHAR on the i2c, the GET_CHAR
 ; byte itself is not back-looped (but the byte
 ; of the ringbuffer, instead) and not forwarded
 ; to rs232
sspstat_masked ;help variable for masking the SSPSTAT register
buf_ptr ;current position in the ringbuffer
buf ;ringbuffer (extends BUF_SIZE bytes towards the
 ;end of register bank 0)
 endc

 ;set up all ports
 banksel PORTA
 clrf PORTA
 clrf PORTB
 clrf PORTC

 ;port settings (1 is input, 0 is output)
 ;PORTA (8 pins) is unused except for pin 2
 movlw b'00000000'
 banksel TRISA
 movwf TRISA

 ;ports B (4 pins) are shared with ic2 and uart pins
 ;RB4 (pin 13): SDA (i2c)
 ;RB5 (pin 12): RX (rs232)
 ;RB6 (pin 11): SCL (i2c)
 ;RB7 (pin 10): TX (rs232)
 movlw b'01110000'
 banksel TRISB
 movwf TRISB

 ;PORTC (8 pins) is (partly) connected to LEDs
 movlw b'00000000'
 banksel TRISC
 movwf TRISC

 ;digital pins only
 banksel ANSEL
 movlw h'0'
 movwf ANSEL
 movlw h'0'
 movwf ANSELH
 clrf CM1CON0
 clrf CM2CON0
 banksel ADCON0
 clrf ADCON0
 banksel ADCON1
 clrf ADCON1

 ;disable interrupts
 banksel PIE1
 clrf PIE1
 clrf PIE2
 banksel INTCON
 clrf INTCON
 clrf PIR1
 clrf PIR2

 ;uart settings: 19200 bits/s, 8 bit, no parity on transmission
 banksel SPBRGH
 movlw d'0'
 movwf SPBRGH
 movlw d'12'
 movwf SPBRG
 movlw b'00100110'
 movwf TXSTA

 movlw b'10010000' ;enable rs232, 8-bit continuous reception
 banksel RCSTA
 movwf RCSTA

 ;i2c settings: slave mode, 7-bit address (the two assignments are
 ;necessary due to a silicon error on the PIC16F690, see PIC16F690
 ;data sheet errata)
 banksel SSPCON
 movlw b'00111001'
 movwf SSPCON
 movlw b'00110110'
 movwf SSPCON
 banksel SSPADD
 movlw NODE_ADDR ;set i2c address
 movwf SSPADD

 ;configuration completed
 banksel PORTA
 clrf PORTA
 clrf PORTB
 clrf PORTC

;wait for received byte on i2c
i2c_receive:
 bsf PORTC,0
 bcf PORTC,1
 bcf PORTC,2
 btfss PIR1,SSPIF
 goto rs232_receive
 bcf PIR1,SSPIF
 bcf PORTC,0
 bsf PORTC,2

i2c_rx_addr:
 banksel SSPSTAT
 movf SSPSTAT,W
 bcf STATUS,RP0
 andlw b'00101101'
 movwf sspstat_masked
 movlw b'00001001'
 xorwf sspstat_masked,W
 btfss STATUS,Z
 goto i2c_rx_data
 movf SSPBUF,W ;throw the address away (dummy read)
 goto i2c_receive

i2c_rx_data:
 movlw b'00101001'
 xorwf sspstat_masked,W
 btfss STATUS,Z
 goto i2c_tx_addr
 movf SSPBUF,W ;put the data to i2c_rx, i2c_tx, and rs232_tx
 movwf i2c_rx
 movwf i2c_tx
 movwf rs232_tx
 bcf state,READ ;clear reading flag
check_start_buf:
 movlw START_BUF ;check whether i2c_rx == START_BUF
 subwf i2c_rx,W
 btfss STATUS,Z
 goto check_get_char
 call initBuffer ;clear buffer
 bsf state,BUFFER ;set buffering flag
 bsf PORTA,2
 goto i2c_receive
check_get_char:
 movlw GET_CHAR ;check whether i2c_rx == GET_CHAR
 subwf i2c_rx,W
 btfss STATUS,Z
 ;(i2c_rx != START_BUF && i2c_rx != GET_CHAR), so forward i2c_rx to rs232
 goto rs232_transmit
 bcf state,BUFFER ;clear buffering flag
 bcf PORTA,2
 bsf state,READ ;set reading flag
 goto i2c_receive

i2c_tx_addr:
 banksel SSPSTAT
 movf SSPSTAT,W
 bcf STATUS,RP0
 andlw b'00101100'
 movwf sspstat_masked
 movlw b'00001100'
 xorwf sspstat_masked,W
 btfss STATUS,Z
 goto rs232_receive

i2c_transmit:
 banksel SSPSTAT
 btfsc SSPSTAT,BF
 goto i2c_transmit
 bcf STATUS,RP0
 btfsc state,READ
 call readBuffer
write_byte:
 bcf SSPCON,WCOL
 movfw i2c_tx
 movwf SSPBUF
 btfsc SSPCON,WCOL
 goto write_byte
 bsf SSPCON,CKP ;release the clock

rs232_receive:
 bcf STATUS,RP0
 bcf PORTC,0
 bsf PORTC,1
 bcf PORTC,2
 btfss PIR1,RCIF
 goto i2c_receive
 bcf PORTC,1
 bsf PORTC,2
 btfsc RCSTA,OERR ;catch overflow error
 goto overflowerror
 btfsc RCSTA,FERR ;catch framing error
 goto frameerror
 movfw RCREG
 movwf rs232_tx
 movwf rs232_rx
 btfss state,BUFFER
 ;replace the statement by 'goto rs232_transmit' to implement a
 ;rs232-backloop
 goto i2c_receive
 call writeBuffer
 goto i2c_receive

overflowerror:
 bcf RCSTA,CREN ;pulse cren off
 movfw RCREG ;flush fifo
 movfw RCREG ;all three elements
 movfw RCREG
 bsf RCSTA,CREN ;turn CREN back on, this clears OERR
 goto i2c_receive
frameerror:
 movfw RCREG ;reading RCREG clears FERR
 goto i2c_receive

rs232_transmit:
 btfss PIR1,TXIF
 goto rs232_transmit
 movfw rs232_tx
 movwf TXREG
 goto i2c_receive

;initialize ringbuffer
initBuffer
 clrf buf_ptr
clear_byte:
 movlw buf ;load address of buf into FSR
 addwf buf_ptr,W
 movwf FSR
 clrf INDF
 movlw d'1'
 addwf buf_ptr,F
 movlw BUF_SIZE
 subwf buf_ptr,W ;check whether (buf_ptr - BUF_SIZE) == 0
 btfss STATUS,Z
 goto clear_byte
 clrf buf_ptr
 return

;write rs232_rx to current pointer position in ringbuffer
writeBuffer
 movlw buf
 addwf buf_ptr,W
 movwf FSR
 movfw rs232_rx
 movwf INDF
 movlw d'1' ;increase pointer (wrap if it exceeds BUF_SIZE)
 addwf buf_ptr,F
 movlw BUF_SIZE ;check whether buf_ptr < BUF_SIZE
 subwf buf_ptr,W
 btfsc STATUS,Z
 clrf buf_ptr
 return

;read data at current pointer position from ringbuffer and put to i2c_tx
readBuffer
 movlw d'1' ;decrease pointer (wrap if it exceeds BUF_SIZE)
 subwf buf_ptr,F
 movfw buf_ptr
 xorlw b'11111111'
 btfss STATUS,Z
 goto read_byte
 movlw BUF_SIZE
 movwf buf_ptr
 movlw d'1'
 subwf buf_ptr
read_byte:
 movlw buf
 addwf buf_ptr,W
 movwf FSR
 movfw INDF
 movwf i2c_tx
 return
 end

References

[1] A. Rowe, A. Goode, D. Goel, C. Rosenberg and I. Nourbakhsh. CMUcam3: Open Source
Programmable Embedded Color Vision Platform. http://www.cmucam.org

[2] A. Rowe, A. Goode, D. Goel, and I. Nourbakhsh. CMUcam3: An Open Programmable
Embedded Vision Sensor. Technical Report CMU-RI-TR-07-13, Carnegie Mellon University,
Robotics Institute, 2007. [online]
http://www.ri.cmu.edu/pub_files/pub4/rowe_anthony_2007_1/rowe_anthony_2007_1.pdf

[3] CMUcam3 Datasheet. Carnegie Mellon University, Robotics Institute, 2007. [online]
http://www.cmucam.org/attachment/wiki/Documentation/CMUcam3_datasheet.pdf

[4] CMUcam3 SDK Installation Guide. Carnegie Mellon University, Robotics Institute, 2007.
[online] http://www.cmucam.org/attachment/wiki/Documentation/CMUcam3_sdk_guide.pdf

[5] CMUcam2 Vision Sensor – User Guide. Carnegie Mellon University, Robotics Institute,
2003. [online] http://www.cs.cmu.edu/~cmucam2/CMUcam2_manual.pdf

[6] CMUcam2 – Graphical User Interface. Carnegie Mellon University, Robotics Institute,
2003. [online] http://www.cs.cmu.edu/~cmucam2/CMUcam2GUI_overview.pdf

[7] L. den Hartog. Lego Mindstorms NXT Camera. Semester Thesis, ETH Zurich, Computer
Engineering and Networks Laboratory, 2008.

[8] J. Hansen. Not eXactly C (NXC) Programmer’s Guide, 2007. [online]
http://bricxcc.sourceforge.net/nbc/nxcdoc/NXC_Guide.pdf

[9] PIC16F631/677/685/687/689/690 Data Sheet. Microchip Technology Inc., 2006.

[10] Application Note 774 – Asynchronous Communications with the PICmicro® USART.
Microchip Technology Inc., 2008.

[11] Application Note 734 – Using the PIC Devices’ SSP and MSSP Modules for Slave I2CTM
Communication. Microchip Technology Inc., 2008.

